299 research outputs found

    Ising Ferromagnet: Zero-Temperature Dynamic Evolution

    Get PDF
    The dynamic evolution at zero temperature of a uniform Ising ferromagnet on a square lattice is followed by Monte Carlo computer simulations. The system always eventually reaches a final, absorbing state, which sometimes coincides with a ground state (all spins parallel), and sometimes does not (parallel stripes of spins up and down). We initiate here the numerical study of ``Chaotic Time Dependence'' (CTD) by seeing how much information about the final state is predictable from the randomly generated quenched initial state. CTD was originally proposed to explain how nonequilibrium spin glasses could manifest equilibrium pure state structure, but in simpler systems such as homogeneous ferromagnets it is closely related to long-term predictability and our results suggest that CTD might indeed occur in the infinite volume limit.Comment: 14 pages, Latex with 8 EPS figure

    Zero Temperature Dynamics of 2D and 3D Ising Ferromagnets

    Full text link
    We consider zero-temperature, stochastic Ising models with nearest-neighbor interactions in two and three dimensions. Using both symmetric and asymmetric initial configurations, we study the evolution of the system with time. We examine the issue of convergence of the dynamics and discuss the nature of the final state of the system. By determining a relation between the median number of spin flips per site, the probability p that a spin in the initial spin configuration takes the value +1, and lattice size, we conclude that in two and three dimensions, the system converges to a frozen (but not necessarily uniform) state when p is not equal to 1/2. Results for p=1/2 in three dimensions are consistent with the conjecture that the system does not evolve towards a fully frozen limiting state. Our simulations also uncover `striped' and `blinker' states first discussed by Spirin et al., and their statistical properties are investigated.Comment: 17 pages, 12 figure

    Phase formation in hole- and electron-doped rare-earth nickelate single crystals

    Full text link
    The recent discovery of superconductivity in hole-doped infinite-layer nickelates has triggered a great interest in the synthesis of novel nickelate phases, which have primarily been examined in thin film samples. Here, we report the high-pressure optical floating zone (OFZ) growth of various perovskite and perovskite-derived rare-earth nickelate single-crystals, and investigate the effects of hole-, electron-, and self-doping. For hole-doping with Ca and Sr, we observe phase separations during the growth process when a substitution level of 8% is exceeded. A similar trend emerges for electron-doping with Ce and Zr. Employing lower doping levels allows us to grow sizeable crystals in the perovskite phase, which exhibit significantly different electronic and magnetic properties than the undoped parent compounds, such as a decreased resistivity and a suppressed magnetic response. Our insights into the doping-dependent phase formation and the resulting properties of the synthesized crystals reveal limitations and opportunities for the exploration and manipulation of electronic states in rare-earth nickelates

    Directional emission of light from a nano-optical Yagi-Uda antenna

    Full text link
    The plasmon resonance of metal nanoparticles can enhance and direct light from optical emitters in much the same way that radio frequency (RF) antennas enhance and direct the emission from electrical circuits. In the RF regime, a typical antenna design for high directivity is the Yagi-Uda antenna, which basically consists of a one-dimensional array of antenna elements driven by a single feed element. Here, we present the experimental demonstration of directional light emission from a nano-optical Yagi-Uda antenna composed of an array of appropriately tuned gold nanorods. Our results indicate that nano-optical antenna arrays are a simple but efficient tool for the spatial control of light emission.Comment: 4 pages, including 4 figure

    Metastability in zero-temperature dynamics: Statistics of attractors

    Full text link
    The zero-temperature dynamics of simple models such as Ising ferromagnets provides, as an alternative to the mean-field situation, interesting examples of dynamical systems with many attractors (absorbing configurations, blocked configurations, zero-temperature metastable states). After a brief review of metastability in the mean-field ferromagnet and of the droplet picture, we focus our attention onto zero-temperature single-spin-flip dynamics of ferromagnetic Ising models. The situations leading to metastability are characterized. The statistics and the spatial structure of the attractors thus obtained are investigated, and put in perspective with uniform a priori ensembles. We review the vast amount of exact results available in one dimension, and present original results on the square and honeycomb lattices.Comment: 21 pages, 6 figures. To appear in special issue of JPCM on Granular Matter edited by M. Nicodem

    Numerical Modeling of Plasmonic Nanoantennas with Realistic 3D Roughness and Distortion

    Get PDF
    Nanostructured plasmonic metamaterials, including optical nanoantenna arrays, are important for advanced optical sensing and imaging applications including surface-enhanced fluorescence, chemiluminescence, and Raman scattering. Although designs typically use ideally smooth geometries, realistic nanoantennas have nonzero roughness, which typically results in a modified enhancement factor that should be involved in their design. Herein we aim to treat roughness by introducing a realistic roughened geometry into the finite element (FE) model. Even if the roughness does not result in significant loss, it does result in a spectral shift and inhomogeneous broadening of the resonance, which could be critical when fitting the FE simulations of plasmonic nanoantennas to experiments. Moreover, the proposed approach could be applied to any model, whether mechanical, acoustic, electromagnetic, thermal, etc, in order to simulate a given roughness-generated physical phenomenon

    Lumbar hernia diagnosed after laparoscopic hiatal hernia surgery

    Get PDF
    The presence of a new lumbar swelling or pain in the postoperative period following laparoscopic surgery should raise the suspicion of a lumbar hernia. Cross‐sectional imaging can be used to establish an early diagnosis to enable successful management

    Systematic profiling of DNMT3A variants reveals protein instability mediated by the DCAF8 E3 ubiquitin ligase adaptor

    Get PDF
    Clonal hematopoiesis is a prevalent age-related condition associated with greatly increased risk of hematologic disease; mutations in DNA methyltransferase 3A (DNMT3A) are the most common driver of this state. DNMT3A variants occur across the gene with some particularly associated with malignancy, but the functional relevance and mechanisms of pathogenesis of the majority of mutations is unknown. Here, we systematically investigated the methyltransferase activity and protein stability of 253 disease-associated DNMT3A mutations, finding that 74% were loss-of-function mutations. Half of these variants exhibited reduced protein stability and, as a class, correlated with greater clonal expansion and AML development. We investigated the mechanisms underlying the instability using a CRISPR screen and uncovered regulated destruction of DNMT3A mediated by the DCAF8 E3 ubiquitin ligase adaptor. We establish a new paradigm to classify novel variants that has prognostic and potential therapeutic significance for patients with hematologic disease
    corecore